Search results
Results from the WOW.Com Content Network
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
In modern JavaScript it's considered bad form to use the Array type as an associative array. Consensus is that the Object type and Map / WeakMap classes are best for this purpose. The reasoning behind this is that if Array is extended via prototype and Object is kept pristine, for and for-in loops will work as expected on associative 'arrays'.
Method chaining is a common syntax for invoking multiple method calls in object-oriented programming languages. Each method returns an object, allowing the calls to be chained together in a single statement without requiring variables to store the intermediate results. [1]
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
Suppose that such an algorithm existed, then we could construct a comparison-based sorting algorithm with running time O(n f(n)) as follows: Chop the input array into n arrays of size 1. Merge these n arrays with the k-way merge algorithm. The resulting array is sorted and the algorithm has a running time in O(n f(n)).
This is done by merging runs until certain criteria are fulfilled. Timsort has been Python's standard sorting algorithm since version 2.3 (since version 3.11 using the Powersort merge policy [5]), and is used to sort arrays of non-primitive type in Java SE 7, [6] on the Android platform, [7] in GNU Octave, [8] on V8, [9] and Swift. [10]
The outer loop of block sort is identical to a bottom-up merge sort, where each level of the sort merges pairs of subarrays, A and B, in sizes of 1, then 2, then 4, 8, 16, and so on, until both subarrays combined are the array itself.
In computer science, function composition is an act or mechanism to combine simple functions to build more complicated ones. Like the usual composition of functions in mathematics, the result of each function is passed as the argument of the next, and the result of the last one is the result of the whole.