Search results
Results from the WOW.Com Content Network
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
Nominal Pipe Size (NPS) is a North American set of standard sizes for pipes used for high or low pressures and temperatures. [1] " Nominal" refers to pipe in non-specific terms and identifies the diameter of the hole with a non-dimensional number (for example – 2-inch nominal steel pipe" consists of many varieties of steel pipe with the only criterion being a 2.375-inch (60.3 mm) outside ...
, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m); v {\displaystyle \langle v\rangle } , the mean flow velocity , experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [ 3 ]
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow, an English mathematician. [3] = Cylinder, where
S foot of water per foot of pipe; P d = pressure drop over the length of pipe in psig (pounds per square inch gauge pressure) L = length of pipe in feet; Q = flow, gpm (gallons per minute) C = pipe roughness coefficient; d = inside pipe diameter, in (inches) Note: Caution with U S Customary Units is advised. The equation for head loss in pipes ...