enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical shift - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift

    Chemical shift δ is usually expressed in parts per million (ppm) by frequency, because it is calculated from [5] =, where ν sample is the absolute resonance frequency of the sample, and ν ref is the absolute resonance frequency of a standard reference compound, measured in the same applied magnetic field B 0.

  3. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Other NMR-active nuclei can also cause these satellites, but carbon is most common culprit in the proton NMR spectra of organic compounds. Sometimes other peaks can be seen around 1 H peaks, known as spinning sidebands and are related to the rate of spin of an NMR tube. These are experimental artifacts from the spectroscopic analysis itself ...

  4. Paramagnetic nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Paramagnetic_nuclear...

    Directly bound nuclei have hyperfine shifts of thousands of ppm but are usually not oberservable due to extremely fast relaxation and line broadening. [5] 1 H NMR spectrum of 1,1'-dimethylnickelocene, illustrating the dramatic chemical shifts observed in some paramagnetic compounds. The sharp signals near 0 ppm are from solvent.

  5. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The vast majority of molecules in a solution are solvent molecules, and most regular solvents are hydrocarbons and so contain NMR-active hydrogen-1 nuclei. In order to avoid having the signals from solvent hydrogen atoms overwhelm the experiment and interfere in analysis of the dissolved analyte, deuterated solvents are used where >99% of the ...

  6. Fluorine-19 nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorine-19_nuclear...

    19 F NMR chemical shifts in the literature vary strongly, commonly by over 1 ppm, even within the same solvent. [5] Although the reference compound for 19 F NMR spectroscopy, neat CFCl 3 (0 ppm), [6] has been used since the 1950s, [7] clear instructions on how to measure and deploy it in routine measurements were not present until recently. [5]

  7. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    The two dimensions of a two-dimensional NMR experiment are two frequency axes representing a chemical shift. Each frequency axis is associated with one of the two time variables, which are the length of the evolution period (the evolution time) and the time elapsed during the detection period (the detection time).

  8. Phosphorus-31 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Phosphorus-31_nuclear...

    With a gyromagnetic ratio 40.5% of that for 1 H, 31 P-NMR signals are observed near 202 MHz on an 11.7-Tesla magnet (used for 500 MHz 1 H-NMR measurements). Chemical shifts are typically referenced to 85% phosphoric acid, which is assigned the chemical shift of 0, and appear at positive values (downfield of the standard). [2]

  9. Deuterated DMSO - Wikipedia

    en.wikipedia.org/wiki/Deuterated_DMSO

    13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...