Search results
Results from the WOW.Com Content Network
Let one n-gon be inscribed in a circle, and let another n-gon be tangential to that circle at the vertices of the first n-gon. Then from any point P on the circle, the product of the perpendicular distances from P to the sides of the first n-gon equals the product of the perpendicular distances from P to the sides of the second n-gon. [13]
The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR 2 where R is the circumradius. [4]: p. 73 The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR 2 − 1 / 4 ns 2, where s is the side length and R is the ...
If n = pq with p = 2 or p and q coprime, an n-gon can be constructed from a p-gon and a q-gon. If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed. If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
As cycle graphs can be drawn as regular polygons, the symmetries of an n-cycle are the same as those of a regular polygon with n sides, the dihedral group of order 2n. In particular, there exist symmetries taking any vertex to any other vertex, and any edge to any other edge, so the n-cycle is a symmetric graph.
For premium support please call: 800-290-4726 more ways to reach us
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An equilateral triangle A bicentric kite A bicentric isosceles trapezoid A regular pentagon. In geometry, a bicentric polygon is a tangential polygon (a polygon all of whose sides are tangent to an inner incircle) which is also cyclic — that is, inscribed in an outer circle that passes through each vertex of the polygon.