Search results
Results from the WOW.Com Content Network
Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. [2] [3] It is named after Friedrich Paschen who discovered it empirically in 1889. [4]
Liquid hydrogen (H 2 (l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H 2 form. [4] To exist as a liquid, H 2 must be cooled below its critical point of 33 K. However, for it to be in a fully liquid state at atmospheric pressure, H 2 needs to be cooled to 20.28 K (−252.87 °C; −423.17 °F). [5]
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The lifting power in air of hydrogen and helium can be calculated using the theory of buoyancy. The buoyancy depends upon the difference of the densities (ρ air) − (ρ gas) rather than upon their ratios. The lifting force for a volume of gas is given by the equation: F B = (ρ air - ρ gas) × g × V
These reactions were demonstrated reversible without catalysts addition at relatively low hydrogen pressure and temperatures. The addition of TiCl3 was found to decrease the working temperature of the first dehydrogenation step of 50 K, [59] but no variations were recorded for the last two reaction steps. [51]
Thus, the volumes of hydrogen and oxygen which combine (i.e., 100mL and 50mL) bear a simple ratio of 2:1, as also is the case for the ratio of product water vapor to reactant oxygen. Based on Gay-Lussac's results, Amedeo Avogadro hypothesized in 1811 that, at the same temperature and pressure, equal volumes of gases (of whatever kind) contain ...
The time to reach equilibrium depends on parameters such as temperature, pressure, and the materials involved, and is determined by the minimum free energy. In equilibrium, the Gibbs free energy of reaction must be zero. The pressure dependence can be explained with the Le Chatelier's principle. For example, an increase in pressure due to ...
A representation of Hess's law (where H represents enthalpy) Hess's law of constant heat summation, also known simply as Hess's law, is a relationship in physical chemistry and thermodynamics [1] named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840.