Search results
Results from the WOW.Com Content Network
Other electron-deficient, sp 3 amination reagents react by similar mechanisms to give substitution products. [3] In aminations involving oxaziridines, nucleophilic attack takes place on the nitrogen atom of the three-membered ring. For some substrates (α-cyano ketones, for example), the resulting alkoxide reacts further to afford unexpected ...
The mechanism of electrophilic fluorination remains controversial. At issue is whether the reaction proceeds via an S N 2 or single-electron transfer (SET) process. In support of the S N 2 mechanism, aryl Grignard reagents and aryllithiums give similar yields of fluorobenzene in combination with N-fluoro-o-benzenedisulfonimide (NFOBS), even though the tendencies of these reagents to ...
For example, the reaction of HCl with ethylene furnishes chloroethane. The reaction proceeds with a cation intermediate, being different from the above halogen addition. An example is shown below: Proton (H +) adds (by working as an electrophile) to one of the carbon atoms on the alkene to form cation 1.
Togni reagent II is used for trifluoromethylation of organic compounds. For phenolates, the substitution takes place preferably in the ortho position. It is possible to obtain a second substitution by using an excess of Togni reagent II. [7] Reactions with alcohols yield the corresponding trifluoromethyl ethers. [8]
This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...
The mechanism of the Stille reaction has been extensively studied. [11] [23] The catalytic cycle involves an oxidative addition of a halide or pseudohalide (2) to a palladium catalyst (1), transmetalation of 3 with an organotin reagent (4), and reductive elimination of 5 to yield the coupled product (7) and the regenerated palladium catalyst (1).
Cross electrophile coupling is a type of cross-coupling reaction that occurs between two electrophiles. It is often catalyzed by transition metal catalyst(s). Unlike conventional cross-coupling reactions of an electrophile with an organometallic reagent, [1] the coupling partners in cross electrophile coupling reactions are both electrophiles. [2]
In organic chemistry, an electrophilic addition (A E) reaction is an addition reaction where a chemical compound containing a double or triple bond has a π bond broken, with the formation of two new σ bonds. [1] The driving force for this reaction is the formation of an electrophile X + that forms a covalent bond with an electron-rich ...