Search results
Results from the WOW.Com Content Network
Intermediate filaments are composed of various proteins, depending on the type of cell in which they are found; they are normally 8-12 nm in diameter. [2] The cytoskeleton provides the cell with structure and shape, and by excluding macromolecules from some of the cytosol, it adds to the level of macromolecular crowding in this compartment. [17]
The cells of most fungi grow as tubular, elongated, and thread-like (filamentous) structures called hyphae, which may contain multiple nuclei and extend by growing at their tips. Each tip contains a set of aggregated vesicles —cellular structures consisting of proteins , lipids , and other organic molecules—called the Spitzenkörper . [ 32 ]
A hypha (from Ancient Greek ὑφή (huphḗ) 'web'; pl.: hyphae) is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. [1] In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium.
Microtubule and tubulin metrics [1]. Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm [2] and have an inner diameter between 11 and 15 nm. [3]
The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus , which separate the chromosomes during cell division .
The cytoskeleton provides stiffening structure and points of attachment for motor structures that enable the cell to move, change shape, or transport materials. The motor structures are microfilaments of actin and actin-binding proteins, including α-actinin, fimbrin, and filamin are present in submembranous cortical layers and bundles.
Arbuscular mycorrhizal fungi are found in 80% of plant species [44] and have been surveyed on all continents except Antarctica. [45] [46] The biogeography of glomeromycota is influenced by dispersal limitation, [47] environmental factors such as climate, [45] soil series and soil pH, [46] soil nutrients [48] and plant community.
Inside a cilium and a flagellum is a microtubule-based cytoskeleton called the axoneme. The axoneme of a primary cilium typically has a ring of nine outer microtubule doublets (called a 9+0 axoneme), and the axoneme of a motile cilium has two central microtubules in addition to the nine outer doublets (called a 9+2 axoneme).