Search results
Results from the WOW.Com Content Network
In mathematics, a law is a formula that is always true within a given context. [1] Laws describe a relationship , between two or more expressions or terms (which may contain variables ), usually using equality or inequality , [ 2 ] or between formulas themselves, for instance, in mathematical logic .
This page was last edited on 23 December 2024, at 18:28 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions.Assume is a set of formulas, a formula, and () has been derived. The generalization rule states that () can be derived if is not mentioned in and does not occur in .
By the commutative law, the middle two terms cancel: = leaving (+) = The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring.
It includes theorems (and lemmas, corollaries, conjectures, laws, and perhaps even the odd object) that are well known in mathematics, but which are not named for the originator. That is, these items on this list illustrate Stigler's law of eponymy (which is not, of course, due to Stephen Stigler, who credits Robert K Merton).
Cox's theorem, named after the physicist Richard Threlkeld Cox, is a derivation of the laws of probability theory from a certain set of postulates. [1] [2] This derivation justifies the so-called "logical" interpretation of probability, as the laws of probability derived by Cox's theorem are applicable to any proposition.