enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    The integers arranged on a number line. An integer is the number zero , a positive natural number (1, 2, 3, . . .), or the negation of a positive natural number (−1, −2, −3, . . .). [1] The negations or additive inverses of the positive natural numbers are referred to as negative integers. [2]

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  4. Integer programming - Wikipedia

    en.wikipedia.org/wiki/Integer_programming

    An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.

  5. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    Bitwise AND of 4-bit integers. A bitwise AND is a binary operation that takes two equal-length binary representations and performs the logical AND operation on each pair of the corresponding bits.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.

  7. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Roman numerals: The numeral system of ancient Rome, still occasionally used today, mostly in situations that do not require arithmetic operations. Tally marks: Usually used for counting things that increase by small amounts and do not change very quickly. Fractions: A representation of a non-integer as a ratio of two integers.

  8. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    Many number systems, such as the integers and the rationals, enjoy a naturally given group structure. In some cases, such as with the rationals, both addition and multiplication operations give rise to group structures. Such number systems are predecessors to more general algebraic structures known as rings and fields.

  9. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal, meaning that any algorithm for that task would require () elementary operations.