Search results
Results from the WOW.Com Content Network
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
One application is the definition of inverse trigonometric functions. For example, the cosine function is injective when restricted to the interval [0, π]. The image of this restriction is the interval [−1, 1], and thus the restriction has an inverse function from [−1, 1] to [0, π], which is called arccosine and is denoted arccos.
This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.
Other examples are solutions of linear differential equations with polynomial coefficients. If the coefficient at the highest derivative is constant, then all solutions of such equations are entire functions. For example, the exponential function, sine, cosine, Airy functions and Parabolic cylinder functions arise in this way. The class of ...