enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group.

  3. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    Consider an experiment to study the effect of three different levels of a factor on a response (e.g. three levels of a fertilizer on plant growth). If we had 6 observations for each level, we could write the outcome of the experiment in a table like this, where a 1, a 2, and a 3 are the three levels of the factor being studied.

  4. Mixed-design analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Mixed-design_analysis_of...

    Huck, S. W. & McLean, R. A. (1975). "Using a repeated measures ANOVA to analyze the data from a pretest-posttest design: A potentially confusing task". Psychological Bulletin, 82, 511–518. Pollatsek, A. & Well, A. D. (1995). "On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis".

  5. Two-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Two-way_analysis_of_variance

    In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.

  6. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.

  7. Post hoc analysis - Wikipedia

    en.wikipedia.org/wiki/Post_hoc_analysis

    In a scientific study, post hoc analysis (from Latin post hoc, "after this") consists of statistical analyses that were specified after the data were seen. [1] [2] They are usually used to uncover specific differences between three or more group means when an analysis of variance (ANOVA) test is significant. [3]

  8. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the examples listed above, a nuisance variable is a variable that is not the primary focus of the study but can affect the outcomes of the experiment. [3] They are considered potential sources of variability that, if not controlled or accounted for, may confound the interpretation between the independent and dependent variables .

  9. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The hypothesis that a data set in a regression analysis follows the simpler of two proposed linear models that are nested within each other. Multiple-comparison testing is conducted using needed data in already completed F-test, if F-test leads to rejection of null hypothesis and the factor under study has an impact on the dependent variable. [1]