Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The basic example of a parabolic PDE is the one-dimensional heat equation u t = α u x x , {\displaystyle u_{t}=\alpha \,u_{xx},} where u ( x , t ) {\displaystyle u(x,t)} is the temperature at position x {\displaystyle x} along a thin rod at time t {\displaystyle t} and α {\displaystyle \alpha } is a positive constant called the thermal ...
Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling; Numerical 3-dimensional matching [3]: SP16 Open-shop scheduling; Partition problem [2] [3]: SP12 Quadratic assignment problem [3]: ND43 Quadratic programming (NP-hard in some cases, P if convex)
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
Muller's method fits a parabola, i.e. a second-order polynomial, to the last three obtained points f(x k-1), f(x k-2) and f(x k-3) in each iteration. One can generalize this and fit a polynomial p k,m (x) of degree m to the last m+1 points in the k th iteration. Our parabola y k is written as p k,2 in this notation.
The graph has the shape of a parabola, and the vertex of the parabola changes as the parameter r changes. As mentioned above, the logistic map can be used as a model to consider the fluctuation of population size.
The parabola has fourth order contact with its osculating circle there. For large t the radius of curvature increases ~ t 3 , that is, the curve straightens more and more. Lissajous curve
The orbits' envelope of the projectiles (with constant initial speed) is a concave parabola. The initial speed is 10 m/s. We take g = 10 m/s 2. We consider the following example of envelope in motion. Suppose at initial height 0, one casts a projectile into the air with constant initial velocity v but different elevation angles θ.