Search results
Results from the WOW.Com Content Network
Magnesium oxide (Mg O), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg 2+ ions and O 2− ions held together by ionic bonding .
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
Periclase is a magnesium mineral that occurs naturally in contact metamorphic rocks and is a major component of most basic refractory bricks. It is a cubic form of magnesium oxide (Mg O). In nature it usually forms a solid solution with wüstite (FeO) and is then referred to as ferropericlase or magnesiowüstite. [6]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Element Negative states Positive states Group Notes −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Z; 1 hydrogen: H −1: 0 +1: 1 [1]2 helium: He 0
Magnesium oxide is the end product of the thermal decomposition of some magnesium compounds and is usually prepared by igniting carbonates or hydroxides. Magnesium hydroxide is a strong electrolyte, which can be obtained by the reaction of a soluble magnesium salt and sodium hydroxide.
Crystalline magnesium oxide, or periclase, has a calculated lattice energy of 3795 kJ mol-1 which must be overcome for it to go into solution or for reaction to occur. Reactive magnesia is essentially amorphous magnesia with low lattice energy and is made at low temperatures and finely ground. CCM is manufactured worldwide.
In both, magnesium oxide is the precursor to magnesium metal. The magnesium oxide is produced as a solid solution with calcium oxide by calcining the mineral dolomite, which is a solid solution of calcium and magnesium carbonates: CaCO 3 ·MgCO 3 → MgO·CaO + 2 CO 2. Reduction occurs at high temperatures with silicon.