Search results
Results from the WOW.Com Content Network
Hybrid simulation (or combined simulation) corresponds to a mix between continuous and discrete event simulation and results in integrating numerically the differential equations between two sequential events to reduce the number of discontinuities. [10] A stand-alone simulation is a simulation running on a single workstation by itself.
Monte Carlo simulation: Drawing a large number of pseudo-random uniform variables from the interval [0,1] at one time, or once at many different times, and assigning values less than or equal to 0.50 as heads and greater than 0.50 as tails, is a Monte Carlo simulation of the behavior of repeatedly tossing a coin.
In contrast, the Gillespie algorithm allows a discrete and stochastic simulation of a system with few reactants because every reaction is explicitly simulated. A trajectory corresponding to a single Gillespie simulation represents an exact sample from the probability mass function that is the solution of the master equation.
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution. The more steps ...
Modeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making.
The simulation must keep track of the current simulation time, in whatever measurement units are suitable for the system being modeled. In discrete-event simulations, as opposed to continuous simulations, time 'hops' because events are instantaneous – the clock skips to the next event start time as the simulation proceeds.
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [1] Realizations of these random variables are generated and inserted into a model of the system. Outputs of the model are recorded, and then the process is repeated with a new set of random values.
Another advantage is that randomness into the search-process can be used for obtaining interval estimates of the minimum of a function via extreme value statistics. [ 8 ] [ 9 ] Further, the injected randomness may enable the method to escape a local optimum and eventually to approach a global optimum.