Search results
Results from the WOW.Com Content Network
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
For a Newtonian fluid wall, shear stress (τ w) can be related to shear rate by = ˙ where μ is the dynamic viscosity of the fluid. For non-Newtonian fluids, there are different constitutive laws depending on the fluid, which relates the stress tensor to the shear rate tensor.
For a Newtonian fluid, the stress exerted by the fluid in resistance to the shear is proportional to the strain rate or shear rate. A simple example of a shear flow is Couette flow , in which a fluid is trapped between two large parallel plates, and one plate is moved with some relative velocity to the other.
The following equation illustrates the relation between shear rate and shear stress for a fluid with laminar flow only in the direction x: =, where: τ x y {\displaystyle \tau _{xy}} is the shear stress in the components x and y, i.e. the force component on the direction x per unit surface that is normal to the direction y (so it is parallel to ...
A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.
Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.
The depth–slope product is used to calculate the shear stress at the bed of an open channel containing fluid that is undergoing steady, uniform flow. It is widely used in river engineering, stream restoration, sedimentology, and fluvial geomorphology.
The apparent viscosity of a dilatant fluid is higher when measured at a higher shear rate (η 4 is higher than η 3), while the apparent viscosity of a Bingham plastic is lower (η 2 is lower than η 1). In fluid mechanics, apparent viscosity (sometimes denoted η) [1] is the shear stress applied to a fluid divided by the shear rate: