Search results
Results from the WOW.Com Content Network
Thus, the term "ionic bonding" is given when the ionic character is greater than the covalent character – that is, a bond in which there is a large difference in electronegativity between the two atoms, causing the bonding to be more polar (ionic) than in covalent bonding where electrons are shared more equally.
Covalent and ionic bonding form a continuum, with ionic character increasing with increasing difference in the electronegativity of the participating atoms. Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons).
The classical model identifies three main types of chemical bonds — ionic, covalent, and metallic — distinguished by the degree of charge separation between participating atoms. [3] The characteristics of the bond formed can be predicted by the properties of constituent atoms, namely electronegativity.
In organic chemistry, covalent bonding is much more common than ionic bonding. Covalent bonding also includes many kinds of interactions, including σ-bonding, π-bonding, metal-to-metal bonding, agostic interactions, bent bonds, three-center two-electron bonds and three-center four-electron bonds. [2] [3] The term covalent bond dates from 1939 ...
These differences in the strength of force (i.e. covalent vs. van der Waals) and electronic characteristics (i.e. delocalized electrons) from other types of solids give rise to the unique mechanical, electronic, and thermal properties of molecular solids. [3] [4] [5] [8]
The circumstances under which a compound will have ionic or covalent character can typically be understood using Fajans' rules, which use only charges and the sizes of each ion. According to these rules, compounds with the most ionic character will have large positive ions with a low charge, bonded to a small negative ion with a high charge. [25]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Silicon–oxygen single bonds are longer (1.6 vs 1.4 Å) but stronger (452 vs. about 360 kJ mol −1) than carbon–oxygen single bonds. [1] However, silicon–oxygen double bonds are weaker than carbon–oxygen double bonds (590 vs. 715 kJ mol −1 ) due to a better overlap of p orbitals forming a stronger pi bond in the latter.