enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This method works well for cubic and quartic equations, but Lagrange did not succeed in applying it to a quintic equation, because it requires solving a resolvent polynomial of degree at least six. [ 37 ] [ 38 ] [ 39 ] Apart from the fact that nobody had previously succeeded, this was the first indication of the non-existence of an algebraic ...

  3. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced the the computation of square and cube roots.

  4. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    In mathematics, a cubic function is a function of the form () = + + +, that is, a polynomial function of degree three. In many texts, the coefficients a , b , c , and d are supposed to be real numbers , and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to ...

  5. Ars Magna (Cardano book) - Wikipedia

    en.wikipedia.org/wiki/Ars_Magna_(Cardano_book)

    In all, Cardano was driven to the study of thirteen different types of cubic equations (chapters XI–XXIII). In Ars Magna the concept of multiple root appears for the first time (chapter I). The first example that Cardano provides of a polynomial equation with multiple roots is x 3 = 12x + 16, of which −2 is a double root.

  6. Theory of equations - Wikipedia

    en.wikipedia.org/wiki/Theory_of_equations

    Gerolamo Cardano published them in his 1545 book Ars Magna, together with a solution for the quartic equations, discovered by his student Lodovico Ferrari. In 1572 Rafael Bombelli published his L'Algebra in which he showed how to deal with the imaginary quantities that could appear in Cardano's formula for solving cubic equations.

  7. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This is a cubic equation in y. Solve for y using any method for solving such equations (e.g. conversion to a reduced cubic and application of Cardano's formula). Any of the three possible roots will do.

  8. Testing forgotten rape kits could free the innocent. Here’s ...

    www.aol.com/testing-forgotten-rape-kits-could...

    In 2000, New York City began testing old rape kits with updated methods and comparing the results with profiles in the state DNA database. Three years later, the evidence in Mercer’s case ...

  9. Timeline of algebra - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_algebra

    He understands the importance of the discriminant of the cubic equation and uses an early version of Cardano's formula [18] to find algebraic solutions to certain types of cubic equations. Some scholars, such as Roshdi Rashed, argue that Sharaf al-Din discovered the derivative of cubic polynomials and realized its significance, while other ...