Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Historically, the distinction is based on qualitative differences in properties. Matter in the solid state maintains a fixed volume (assuming no change in temperature or air pressure) and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state maintains a fixed volume (assuming ...
For an example, see Ice § Phases. Liquid: A mostly non-compressible fluid. Able to conform to the shape of its container but retains a (nearly) constant volume independent of pressure. Gas: A compressible fluid. Not only will a gas take the shape of its container but it will also expand to fill the container.
Because many definitions of standard temperature and pressure differ in temperature significantly from standard laboratory temperatures (e.g. 0 °C vs. ~28 °C), reference is often made to "standard laboratory conditions" (a term deliberately chosen to be different from the term "standard conditions for temperature and pressure", despite its ...
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
For example, if the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved. Given the inverse relationship between pressure and volume, the product of pressure ( P ) and volume ( V ) is a constant ( k ) for a given mass of confined gas as long as the temperature is constant.
Of course the real atmosphere does not have a temperature distribution with this exact shape. The temperature function is an approximation. Values for pressure and density are then calculated based on this temperature function, and the constant temperature gradients help to make some of the maths easier.
The standard state for a gas is the hypothetical state it would have as a pure substance obeying the ideal gas equation at standard pressure. IUPAC recommends using a standard pressure p ⦵ or P° equal to 10 5 Pa, or 1 bar. [7] [8] No real gas has perfectly ideal behavior, but this definition of the standard state allows corrections for non ...