enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The variables y of the dual LP are the coefficients of this linear combination. The dual LP tries to find such coefficients that minimize the resulting upper bound. This gives the following LP: [1]: 81–83 Minimize b T y subject to A T y ≥ c, y ≥ 0 . This LP is called the dual of the original LP.

  3. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    According to George Dantzig, the duality theorem for linear optimization was conjectured by John von Neumann immediately after Dantzig presented the linear programming problem. Von Neumann noted that he was using information from his game theory , and conjectured that two person zero sum matrix game was equivalent to linear programming.

  4. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  5. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has implementations of the primal and dual revised simplex method for solving LP problems, based on techniques described by Hall and McKinnon (2005), [6] and Huangfu and Hall (2015, 2018). [ 7 ] [ 8 ] These include the exploitation of hyper-sparsity when solving linear systems in the simplex implementations and, for the dual simplex ...

  6. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively, mathematical programming). It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming. [2]

  7. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    There are two ideas fundamental to duality theory. One is the fact that (for the symmetric dual) the dual of a dual linear program is the original primal linear program. Additionally, every feasible solution for a linear program gives a bound on the optimal value of the objective function of its dual.

  8. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A basis B of the LP is called dual-optimal if the solution = is an optimal solution to the dual linear program, that is, it minimizes . In general, a primal-optimal basis is not necessarily dual-optimal, and a dual-optimal basis is not necessarily primal-optimal (in fact, the solution of a primal-optimal basis may even be unfeasible for the ...

  9. GLOP - Wikipedia

    en.wikipedia.org/wiki/GLOP

    GLOP (the Google Linear Optimization Package) is Google's open-source linear programming solver, created by Google's Operations Research Team. It is written in C++ and was released to the public as part of Google's OR-Tools software suite in 2014. [1] GLOP uses a revised primal-dual simplex algorithm optimized for sparse matrices.