Search results
Results from the WOW.Com Content Network
The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,
When the fluid is moving relative to the reference system, for example, a car driving into headwind, the power required to overcome the aerodynamic drag is given by the following formula: = = (+) Where v w {\displaystyle v_{w}} is the wind speed and v o {\displaystyle v_{o}} is the object speed (both relative to ground).
Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Unfortunately, the equations of motion can not be easily solved analytically for this case. Therefore, a numerical solution will be examined. The following assumptions are made: Constant gravitational acceleration; Air resistance is given by the following drag formula,
In equation , it is assumed that the object is denser than the fluid. If not, the sign of the drag force should be made negative since the object will be moving upwards, against gravity. Examples are bubbles formed at the bottom of a champagne glass and helium balloons.
In fluid dynamics, Epstein drag is a theoretical result, for the drag force exerted on spheres in high Knudsen number flow (i.e., rarefied gas flow). [1] This may apply, for example, to sub-micron droplets in air, or to larger spherical objects moving in gases more rarefied than air at standard temperature and pressure.
Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics ...