enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lie bracket of vector fields - Wikipedia

    en.wikipedia.org/wiki/Lie_bracket_of_vector_fields

    In the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y].

  3. Jacobi identity - Wikipedia

    en.wikipedia.org/wiki/Jacobi_identity

    In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation.

  4. Lie derivative - Wikipedia

    en.wikipedia.org/wiki/Lie_derivative

    valid for any vector fields X and Y and any tensor field T.. Considering vector fields as infinitesimal generators of flows (i.e. one-dimensional groups of diffeomorphisms) on M, the Lie derivative is the differential of the representation of the diffeomorphism group on tensor fields, analogous to Lie algebra representations as infinitesimal representations associated to group representation ...

  5. Structure constants - Wikipedia

    en.wikipedia.org/wiki/Structure_constants

    Using the cross product as a Lie bracket, the algebra of 3-dimensional real vectors is a Lie algebra isomorphic to the Lie algebras of SU(2) and SO(3). The structure constants are f a b c = ϵ a b c {\displaystyle f^{abc}=\epsilon ^{abc}} , where ϵ a b c {\displaystyle \epsilon ^{abc}} is the antisymmetric Levi-Civita symbol .

  6. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  7. Baker–Campbell–Hausdorff formula - Wikipedia

    en.wikipedia.org/wiki/Baker–Campbell...

    For many purposes, it is only necessary to know that an expansion for in terms of iterated commutators of and exists; the exact coefficients are often irrelevant. (See, for example, the discussion of the relationship between Lie group and Lie algebra homomorphisms in Section 5.2 of Hall's book, [2] where the precise coefficients play no role in the argument.)

  8. Dynkin diagram - Wikipedia

    en.wikipedia.org/wiki/Dynkin_diagram

    Removing a node from a connected diagram may yield a connected diagram (simple Lie algebra), if the node is a leaf, or a disconnected diagram (semisimple but not simple Lie algebra), with either two or three components (the latter for D n and E n). At the level of Lie algebras, these inclusions correspond to sub-Lie algebras.

  9. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.