Search results
Results from the WOW.Com Content Network
A fraction that is reducible can be reduced by dividing both the numerator and denominator by a common factor. It can be fully reduced to lowest terms if both are divided by their greatest common divisor. [5] In order to find the greatest common divisor, the Euclidean algorithm or prime factorization can be used. The Euclidean algorithm is ...
The theorem states that each rational solution x = p ⁄ q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n.
For example, is not in lowest terms because both 3 and 9 can be exactly divided by 3. In contrast, is in lowest terms—the only positive integer that goes into both 3 and 8 evenly is 1. Using these rules, we can show that 5 / 10 = 1 / 2 = 10 / 20 = 50 / 100 , for example. As another example, since the greatest ...
For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) ... The greatest common divisor is useful for reducing fractions to the lowest terms. [15] For example, gcd ...
If the constant term is 0, then it will conventionally be omitted when the quadratic is written out. Any polynomial written in standard form has a unique constant term, which can be considered a coefficient of . In particular, the constant term will always be the lowest degree term of the polynomial. This also applies to multivariate polynomials.
As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction 5 / 7 when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
As an example, consider the ground state of silicon.The electron configuration of Si is 1s 2 2s 2 2p 6 3s 2 3p 2 (see spectroscopic notation).We need to consider only the outer 3p 2 electrons, for which it can be shown (see term symbols) that the possible terms allowed by the Pauli exclusion principle are 1 D , 3 P , and 1 S.