Search results
Results from the WOW.Com Content Network
The gradient of f equals Ax − b. Starting with an initial guess x 0, this means we take p 0 = b − Ax 0. The other vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method. Note that p 0 is also the residual provided by this initial step of the algorithm. Let r k be the residual at the kth step:
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as
To solve a linear system Ax = b with a preconditioner K = K 1 K 2 ≈ A, preconditioned BiCGSTAB starts with an initial guess x 0 and proceeds as follows: r 0 = b − Ax 0 Choose an arbitrary vector r̂ 0 such that ( r̂ 0 , r 0 ) ≠ 0 , e.g., r̂ 0 = r 0
Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving linear algebra problems have one of these properties. Furthermore, if a real tridiagonal matrix A satisfies a k , k +1 a k +1, k > 0 for all k , so that the signs of its entries are symmetric, then it is similar to a Hermitian ...
The answer is that these two matrices are similar exactly when there exists a matrix X such that AX − XB = C. In other words, X is a solution to a Sylvester equation. This is known as Roth's removal rule. [4] One easily checks one direction: If AX − XB = C then
The Arnoldi process also constructs ~, an (+)-by-upper Hessenberg matrix which satisfies = + ~ an equality which is used to simplify the calculation of (see § Solving the least squares problem). Note that, for symmetric matrices, a symmetric tri-diagonal matrix is actually achieved, resulting in the MINRES method.