Search results
Results from the WOW.Com Content Network
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.
For diffusion of gases in porous media this equation is the formalization of Darcy's law: the volumetric flux of a gas in the porous media is = where k is the permeability of the medium, μ is the viscosity and p is the pressure. The advective molar flux is given as J = nq
Measurements of primary productivity in the ocean can be made using this ratio. The concentration of oxygen dissolved in seawater varies according to biological processes (photosynthesis and respiration) as well as physical processes (air-sea gas exchange, temperature and pressure changes, lateral mixing and vertical diffusion).
A biological example of diffusion is the gas exchange that occurs during respiration within the human body. [7] Upon inhalation, oxygen is brought into the lungs and quickly diffuses across the membrane of alveoli and enters the circulatory system by diffusing across the membrane of the pulmonary capillaries. [8]
Countercurrent exchange is a mechanism occurring in nature and mimicked in industry and engineering, in which there is a crossover of some property, usually heat or some chemical, between two flowing bodies flowing in opposite directions to each other. The flowing bodies can be liquids, gases, or even solid powders, or any combination of those.
The primary function of perfusion is the efficient removal of cellular waste and nutrition supply during gas exchange. Perfusion occurs during heart contraction when the oxygenated blood is pumped into the arteries. The arteries deliver the blood to the capillary bed of the tissues, where the oxygen is removed by diffusion. [7]
Gas molecules in soil are in continuous thermal motion according to the kinetic theory of gases, and there is also collision between molecules – a random walk process. In soil, a concentration gradient causes net movement of molecules from high concentration to low concentration, which gives the movement of gas by diffusion.