Search results
Results from the WOW.Com Content Network
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
The second sector is the capillary sector, which is represented by the capillaries, where substance and gas exchange between blood and interstitial fluid takes place. Finally, the post-capillary sector is represented by the post-capillary venules, which are formed by a layer of endothelial cells that allow free movement of some substances. [3]
Type I cells are involved in the process of gas exchange between the alveoli and blood. These cells are extremely thin – sometimes only 25 nm – the electron microscope was needed to prove that all alveoli are lined with epithelium. This thin lining enables a fast diffusion of gas exchange between the air in the alveoli and the blood in the ...
Exchange of gases between the air in the lungs and the blood in the capillaries occurs across the walls of the alveolar ducts and alveoli. The alveolar ducts and alveoli consist primarily of simple squamous epithelium, which permits rapid diffusion of oxygen and carbon dioxide.
It consists of the alveolar epithelial cells, their basement membranes and the endothelial cells of the alveolar capillaries (Fig. 10). [23] This blood gas barrier is extremely thin (in humans, on average, 2.2 μm thick). It is folded into about 300 million small air sacs called alveoli [23] (each between 75 and 300 μm in diameter) branching ...
These capillaries lack pinocytotic vesicles, and therefore use gaps present in cell junctions to permit transfer between endothelial cells, and hence across the membrane. Sinusoids are irregular spaces filled with blood and are mainly found in the liver , bone marrow , spleen , and brain circumventricular organs .
Failure of the barrier may occur in a pulmonary barotrauma.This can be a result of several possible causes, including blast injury, swimming-induced pulmonary edema, and breathing gas entrapment or retention in the lung during depressurization, which can occur during ascent from underwater diving or loss of pressure from a pressurized vehicle, habitat or pressure suit.
Exchange of gases in the lung occurs by ventilation and perfusion. [1] Ventilation refers to the in-and-out movement of air of the lungs and perfusion is the circulation of blood in the pulmonary capillaries. [1] In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths.