Search results
Results from the WOW.Com Content Network
As most integers are not squares, when working over the field Q of the rational numbers, the Galois group of most irreducible cubic polynomials is the group S 3 with six elements. An example of a Galois group A 3 with three elements is given by p ( x ) = x 3 − 3 x − 1 , whose discriminant is 81 = 9 2 .
In mathematics, a cubic function is a function of the form () = + + +, that is, a polynomial function of degree three. In many texts, the coefficients a , b , c , and d are supposed to be real numbers , and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to ...
The polynomial P(x) has a rational root (this can be determined using the rational root theorem). The resolvent cubic R 3 (y) has a root of the form α 2, for some non-null rational number α (again, this can be determined using the rational root theorem). The number a 2 2 − 4a 0 is the square of a rational number and a 1 = 0. Indeed:
Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
More generally, suppose that F is a formally real field, and that p(x) ∈ F[x] is a cubic polynomial, irreducible over F, but having three real roots (roots in the real closure of F). Then casus irreducibilis states that it is impossible to express a solution of p ( x ) = 0 by radicals with real radicands.
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-nine polynomial to all of them.