Search results
Results from the WOW.Com Content Network
The vector of coordinates forms the coordinate vector or n-tuple (x 1, x 2, …, x n). Each coordinate x i may be parameterized a number of parameters t. One parameter x i (t) would describe a curved 1D path, two parameters x i (t 1, t 2) describes a curved 2D surface, three x i (t 1, t 2, t 3) describes a curved 3D volume of space, and so on.
The two polar coordinates of a point in a plane may be considered as a two dimensional vector. Such a vector consists of a magnitude (or length) and a direction (or angle). The magnitude, typically represented as r, is the distance from a starting point, the origin, to the point which is represented.
In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. [1] An easy example may be a position such as (5, 2, 1) in a 3-dimensional Cartesian coordinate system with the basis as the axes of this system. Coordinates are always ...
An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...
A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.
The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2] It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the ...
The relationship between different systems is described by coordinate transformations, which give formulas for the coordinates in one system in terms of the coordinates in another system. For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then ...
The curl of a 3-dimensional vector field which only depends on 2 coordinates (say x and y) is simply a vertical vector field (in the z direction) whose magnitude is the curl of the 2-dimensional vector field, as in the examples on this page.