enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  3. Tridecagon - Wikipedia

    en.wikipedia.org/wiki/Tridecagon

    However, it is constructible using neusis, or an angle trisector. The following is an animation from a neusis construction of a regular tridecagon with radius of circumcircle O A ¯ = 12 , {\displaystyle {\overline {OA}}=12,} according to Andrew M. Gleason , [ 1 ] based on the angle trisection by means of the Tomahawk (light blue).

  4. Triacontagon - Wikipedia

    en.wikipedia.org/wiki/Triacontagon

    One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°).

  5. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n -gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn , so the sum of the exterior angles must be 360°.

  6. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    In geometry, a decagon (from the Greek δέκα déka and γωνία gonía, "ten angles") is a ten-sided polygon or 10-gon. [1] The total sum of the interior angles of a simple decagon is 1440°. Regular decagon

  7. Pentagon - Wikipedia

    en.wikipedia.org/wiki/Pentagon

    First, to prove a pentagon cannot form a regular tiling (one in which all faces are congruent, thus requiring that all the polygons be pentagons), observe that 360° / 108° = 3 1 ⁄ 3 (where 108° Is the interior angle), which is not a whole number; hence there exists no integer number of pentagons sharing a single vertex and leaving no gaps ...

  8. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    A skew hexadecagon is a skew polygon with 24 vertices and edges but not existing on the same plane. The interior of such a hexadecagon is not generally defined. A skew zig-zag hexadecagon has vertices alternating between two parallel planes. A regular skew hexadecagon is vertex-transitive with equal edge lengths.

  9. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    In general, the measures of the interior angles of a simple convex polygon with n sides add up to (n − 2) π radians, or (n − 2)180 degrees, (n − 2)2 right angles, or (n − 2) ⁠ 1 / 2 ⁠ turn. The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles ...