Search results
Results from the WOW.Com Content Network
Hull speed can be calculated by the following formula: where is the length of the waterline in feet, and is the hull speed of the vessel in knots. If the length of waterline is given in metres and desired hull speed in knots, the coefficient is 2.43 kn·m −½.
In particular, any "displacement" or non-planing boat requires much greater power to accelerate beyond its hull speed, which is determined by the length of the waterline, and can be calculated using the formula: Vmax (in knots) = square root of LWL (in feet) x 1.34. The hull speed is the speed at which the wavelength of the bow wave stretches ...
The hull form and sail plan for the clipper ships, for example, evolved from experience, not from theory. It was not until the advent of steam power and the construction of large iron ships in the mid-19th century that it became clear to ship owners and builders that a more rigorous approach was needed.
For the International rule, the rating number is approximately equal to the sailing length of the hull. These boats have long overhangs which allow the waterline length to increase as the boat heels over. A displacement hull's maximum speed (the hull speed) is directly proportional to the square root of its waterline length. [2]
A velocity prediction program (VPP) is a computer program which solves for the performance of a sailing yacht in various wind conditions by balancing hull and sail forces. VPPs are used by yacht designers, boat builders, model testers, sailors, sailmakers, also America's Cup teams, to predict the performance of a sailboat before it has been built or prior to major modifications.
The waterline is the line where the hull of a ship meets the surface of the water. A waterline can also refer to any line on a ship's hull that is parallel to the water's surface when the ship is afloat in a level trimmed position. Hence, waterlines are a class of "ships lines" used to denote the shape of a hull in naval architecture lines ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Tertiary strength and loads are the forces, strength, and bending response of individual sections of hull plate between stiffeners, and the behaviour of individual stiffener sections. Usually the tertiary loading is simpler to calculate: for most sections, there is a simple, maximum hydrostatic load or hydrostatic plus slamming load to calculate.