Search results
Results from the WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 2 ] [ 3 ] [ 4 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 5 ] [ 6 ] based on ...
Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]
Artificial Intelligence Markup Language (AIML) [11] is an XML dialect [12] for use with Artificial Linguistic Internet Computer Entity (A.L.I.C.E.)-type chatterbots. Planner is a hybrid between procedural and logical languages. It gives a procedural interpretation to logical sentences where implications are interpreted with pattern-directed ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
It is the combination of automation and ML. [1] AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning.
In this step, uncorrected data are eliminated or corrected, while missing data maybe imputed and relevant variables chosen. Analysis, evaluating data using either supervised or unsupervised algorithms. The algorithm is typically trained on a subset of data, optimizing parameters, and evaluated on a separate test subset.
Examples of categorical features include gender, color, and zip code. Categorical features typically need to be converted to numerical features before they can be used in machine learning algorithms. This can be done using a variety of techniques, such as one-hot encoding, label encoding, and ordinal encoding.