enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  3. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    For example, the first Napoleon point is the point of concurrency of the three lines each from a vertex to the centroid of the equilateral triangle drawn on the exterior of the opposite side from the vertex. A generalization of this notion is the Jacobi point. The de Longchamps point is the point of concurrence of several lines with the Euler line.

  4. Common normal (robotics) - Wikipedia

    en.wikipedia.org/wiki/Common_normal_(robotics)

    A model of a robotic arm with joints. In robotics the common normal of two non-intersecting joint axes is a line perpendicular to both axes. [1]The common normal can be used to characterize robot arm links, by using the "common normal distance" and the angle between the link axes in a plane perpendicular to the common normal. [2]

  5. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    Intersecting lines share a single point in common. Coincidental lines coincide with each other—every point that is on either one of them is also on the other. Perpendicular lines are lines that intersect at right angles. [8] In three-dimensional space, skew lines are lines that are not in the same plane and thus do not intersect each other.

  6. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    For two non-parallel line segments (,), (,) and (,), (,) there is not necessarily an intersection point (see diagram), because the intersection point (,) of the corresponding lines need not to be contained in the line segments. In order to check the situation one uses parametric representations of the lines:

  7. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are supplementary. When a third line is introduced, then there can be properties of ...

  8. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  9. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    Two of the seven non-isomorphic solutions to this problem can be stated in terms of structures in the Fano 3-space, PG(3,2), known as packings. A spread of a projective space is a partition of its points into disjoint lines, and a packing is a partition of the lines into disjoint spreads.