enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data validation and reconciliation - Wikipedia

    en.wikipedia.org/wiki/Data_validation_and...

    Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.

  3. Verification and validation - Wikipedia

    en.wikipedia.org/wiki/Verification_and_validation

    Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.

  4. Analytical quality control - Wikipedia

    en.wikipedia.org/wiki/Analytical_quality_control

    Common validation characteristics include: accuracy, precision (repeatability and intermediate precision), specificity, detection limit, quantitation limit, linearity, range, and robustness. In cases such as changes in synthesis of the drug substance, changes in composition of the finished product, and changes in the analytical procedure ...

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    Validity is the main extent to which a concept, conclusion, or measurement is well-founded and likely corresponds accurately to the real world. [1] [2] The word "valid" is derived from the Latin validus, meaning strong.

  7. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    The hypothesis to be tested is if D is within the acceptable range of accuracy. Let L = the lower limit for accuracy and U = upper limit for accuracy. Then H 0 L ≤ D ≤ U. versus H 1 D < L or D > U. is to be tested. The operating characteristic (OC) curve is the probability that the null hypothesis is accepted when it is true.

  8. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10] As such, it compares estimates of pre- and post-test probability.

  9. Software verification and validation - Wikipedia

    en.wikipedia.org/wiki/Software_verification_and...

    The definition of M&S validation focuses on the accuracy with which the M&S represents the real-world intended use(s). Determining the degree of M&S accuracy is required because all M&S are approximations of reality, and it is usually critical to determine if the degree of approximation is acceptable for the intended use(s).