Search results
Results from the WOW.Com Content Network
Clock signal and legend. In electronics and especially synchronous digital circuits, a clock signal (historically also known as logic beat) [1] is an electronic logic signal (voltage or current) which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits.
As the clock rate of a circuit increases, timing becomes more critical and less variation can be tolerated if the circuit is to function properly. There are two types of clock skew: negative skew and positive skew. Positive skew occurs when the receiving register receives the clock tick later than the transmitting register.
Then the function f(t) = −ωt + θ has slope −ω, which is called a negative frequency. But when the function is used as the argument of a cosine operator, the result is indistinguishable from cos(ωt − θ). Similarly, sin(−ωt + θ) is indistinguishable from sin(ωt − θ + π). Thus any sinusoid can be represented in terms of a ...
For a positive-edge triggered master–slave D flip-flop, when the clock signal is low (logical 0) the "enable" seen by the first or "master" D latch (the inverted clock signal) is high (logical 1). This allows the "master" latch to store the input value when the clock signal transitions from low to high.
Signal edges of a periodic digital signal indicated in blue. In electronics, a signal edge is a transition of a digital signal from low to high or from high to low: A rising edge (or positive edge) is the low-to-high transition. [1] A falling edge (or negative edge) is the high-to-low transition. [1] In the case of a pulse, which consists of ...
In this image, the lower signal is the clock and the upper signal is the data. Data is recognized by the circuit at the positive edge of the clock. There are two time intervals illustrated in this image. One is the setup time, and the other is the timing margin. The setup time is illustrated in red in this image; the timing margin is ...
One way to generate fairly accurate square wave signals with 1/n duty factor, where n is an integer, is to vary the duty cycle until the nth-harmonic is significantly suppressed. For audio-band signals, this can even be done "by ear"; for example, a -40 dB reduction in the 3rd harmonic corresponds to setting the duty factor to 1/3 with a ...
The square wave in mathematics has many definitions, which are equivalent except at the discontinuities: It can be defined as simply the sign function of a sinusoid: = () = () = () = (), which will be 1 when the sinusoid is positive, −1 when the sinusoid is negative, and 0 at the discontinuities.