enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    [1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.

  3. Cyanide - Wikipedia

    en.wikipedia.org/wiki/Cyanide

    In chemistry, cyanide (from Greek kyanos 'dark blue') is a chemical compound that contains a C≡N functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom. [1] In inorganic cyanides, the cyanide group is present as the cyanide anion − C≡N. This anion is extremely poisonous.

  4. Carbon–nitrogen bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–nitrogen_bond

    A CN bond is strongly polarized towards nitrogen (the electronegativities of C and N are 2.55 and 3.04, respectively) and subsequently molecular dipole moments can be high: cyanamide 4.27 D, diazomethane 1.5 D, methyl azide 2.17, pyridine 2.19. For this reason many compounds containing CN bonds are water-soluble.

  5. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    Gilbert N. Lewis introduced the concepts of both the electron pair and the covalent bond in a landmark paper he published in 1916. [1] [2] MO diagrams depicting covalent (left) and polar covalent (right) bonding in a diatomic molecule. In both cases a bond is created by the formation of an electron pair.

  6. Cyanogen - Wikipedia

    en.wikipedia.org/wiki/Cyanogen

    Cyanogen is typically generated from cyanide compounds. One laboratory method entails thermal decomposition of mercuric cyanide: . 2 Hg(CN) 2 → (CN) 2 + Hg 2 (CN) 2 Or, one can combine solutions of copper(II) salts (such as copper(II) sulfate) with cyanides; an unstable copper(II) cyanide is formed which rapidly decomposes into copper(I) cyanide and cyanogen.

  7. Cyano radical - Wikipedia

    en.wikipedia.org/wiki/Cyano_radical

    Bonding in the cyano radical can be described as a combination of two resonance structures: the structure with the unpaired electron on the carbon is the minor contributor, while the structure with the unpaired electron on the nitrogen (the isocyano radical) is the major contributor.

  8. HSAB theory - Wikipedia

    en.wikipedia.org/wiki/HSAB_theory

    HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species . 'Hard' applies to species which are small, have high charge states (the charge criterion applies mainly to acids, to a lesser extent to bases), and are ...

  9. Cyanate - Wikipedia

    en.wikipedia.org/wiki/Cyanate

    Structurally the isomers can be distinguished by the geometry of the complex. In N-bonded cyanate complexes the M−NCO unit sometimes has a linear structure, but with O-bonded cyanate the M−O−C unit is bent. Thus, the silver cyanato complex, [Ag(NCO) 2] −, has a linear structure as shown by X-ray crystallography. [13]