enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    In mathematics, the second partial derivative test is a method in multivariable calculus used to determine if a critical point of a function is a local minimum, maximum or saddle point. Functions of two variables

  3. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    In characteristic different from 2, [10] the discriminant or determinant of Q is the determinant of A. [11] The Hessian determinant of Q is times its discriminant. The multivariate resultant of the partial derivatives of Q is equal to its Hessian determinant. So, the discriminant of a quadratic form is a special case of the above general ...

  4. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    Multivariable calculus is used in many fields of natural and social science and engineering to model and study high-dimensional systems that exhibit deterministic behavior. In economics , for example, consumer choice over a variety of goods, and producer choice over various inputs to use and outputs to produce, are modeled with multivariate ...

  5. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The determinant of the Hessian at is called, in some contexts, a discriminant. If this determinant is zero then x {\displaystyle \mathbf {x} } is called a degenerate critical point of f , {\displaystyle f,} or a non-Morse critical point of f . {\displaystyle f.}

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.