Search results
Results from the WOW.Com Content Network
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Given two random variables that are defined on the same probability space, [1] the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered for any given number of random variables.
An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean. Two other distributions often used in test-statistics are also ratio distributions: the t-distribution arises from a Gaussian random variable divided by an independent chi ...
The triangular distribution on [a, b], a special case of which is the distribution of the sum of two independent uniformly distributed random variables (the convolution of two uniform distributions). The trapezoidal distribution; The truncated normal distribution on [a, b]. The U-quadratic distribution on [a, b].
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
A distinction needs to be made between a random variable whose distribution function or density is the sum of a set of components (i.e. a mixture distribution) and a random variable whose value is the sum of the values of two or more underlying random variables, in which case the distribution is given by the convolution operator.