enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  3. Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Zassenhaus_algorithm

    In mathematics, the Zassenhaus algorithm [1] is a method to calculate a basis for the intersection and sum of two subspaces of a vector space. It is named after Hans Zassenhaus, but no publication of this algorithm by him is known. [2] It is used in computer algebra systems. [3]

  4. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Displacement d (yellow arrow) and moment m (green arrow) of two points x,y on a line (in red). A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it (a plane-plane intersection).

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    intersection of two polygons: window test. If one wants to determine the intersection points of two polygons, one can check the intersection of any pair of line segments of the polygons (see above). For polygons with many segments this method is rather time-consuming. In practice one accelerates the intersection algorithm by using window tests ...

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original line, so =.

  7. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...

  8. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    In R 3, the intersection of two distinct two-dimensional subspaces is one-dimensional. Given subspaces U and W of a vector space V, then their intersection U ∩ W := {v ∈ V : v is an element of both U and W} is also a subspace of V. [10] Proof: Let v and w be elements of U ∩ W. Then v and w belong to both U and W.

  9. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the points in the latter cases, are useful in a number of circumstances. For example, it is a common calculation to perform during ray tracing .