Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
If the numerator and the denominator are polynomials, as in + , the algebraic fraction is called a rational fraction (or rational expression). An irrational fraction is one that is not rational, as, for example, one that contains the variable under a fractional exponent or root, as in x + 2 x 2 − 3 {\displaystyle {\frac {\sqrt {x+2 ...
The numerator and denominator are called the terms of the algebraic fraction. A complex fraction is a fraction whose numerator or denominator, or both, contains a fraction. A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the ...
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. [1] For example, is a rational number, as is every integer (for example, =).
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
In the case of the rational numbers this means that any number has two irreducible fractions, related by a change of sign of both numerator and denominator; this ambiguity can be removed by requiring the denominator to be positive. In the case of rational functions the denominator could similarly be required to be a monic polynomial. [8]
The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.
This result is the basis for rational reconstruction, which allows using modular arithmetic for computing rational numbers for which one knows bounds for numerators and denominators. [ 5 ] The proof is rather easy: by multiplying each congruence by the other y i and subtracting, one gets