Search results
Results from the WOW.Com Content Network
Examples of common classes of biological targets are proteins and nucleic acids. The definition is context-dependent, and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone (like insulin), or some other target of an external stimulus.
This type of adverse effect that results from pharmaceutical drug exposure is commonly due to interactions of the drug with its intended target. In this case, both the therapeutic and toxic targets are the same. To avoid toxicity during treatment, many times the drug needs to be changed to target a different aspect of the illness or symptoms.
A popular example of drug–food interaction is the effect of grapefruit on the metabolism of drugs. Interactions may occur by simultaneous targeting of receptors, directly or indirectly. For example, both Zolpidem and alcohol affect GABA A receptors, and their simultaneous consumption results in the overstimulation of the receptor, which can ...
This differs from a mechanism of action since it is a more specific term that focuses on the interaction between the drug itself and an enzyme or receptor and its particular form of interaction, whether through inhibition, activation, agonism, or antagonism. Furthermore, the term "mechanism of action" is the main term that is primarily used in ...
Druggability is a term used in drug discovery to describe a biological target (such as a protein) that is known to or is predicted to bind with high affinity to a drug. Furthermore, by definition, the binding of the drug to a druggable target must alter the function of the target with a therapeutic benefit to the patient.
The process of finding a new drug against a chosen target for a particular disease usually involves high-throughput screening (HTS), wherein large libraries of chemicals are tested for their ability to modify the target. For example, if the target is a novel GPCR, compounds will be screened for their ability to inhibit or stimulate that ...
The interaction between the drug and this site results in a modification of the target that may include inhibition or potentiation. [15] Most of the pharmacogenetic interactions that involve drug targets are within the field of oncology and include targeted therapeutics designed to address somatic mutations (see also Cancer Pharmacogenomics ).
The phrase "drug design" is similar to ligand design (i.e., design of a molecule that will bind tightly to its target). [6] Although design techniques for prediction of binding affinity are reasonably successful, there are many other properties, such as bioavailability, metabolic half-life, and side effects, that first must be optimized before a ligand can become a safe and effictive drug.