Search results
Results from the WOW.Com Content Network
A relation is strongly connected if, and only if, it is connected and reflexive. A relation is equal to its converse if, and only if, it is symmetric. A relation is connected if, and only if, its complement is anti-symmetric. A relation is strongly connected if, and only if, its complement is asymmetric. [21]
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective ...
Many other real functions are defined either by the implicit function theorem (the inverse function is a particular instance) or as solutions of differential equations. For example, the sine and the cosine functions are the solutions of the linear differential equation
The equivalence relations on any set X, when ordered by set inclusion, form a complete lattice, called Con X by convention. The canonical map ker : X^X → Con X, relates the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f : X → X to its ...
Please wait a moment and reload the page learn more. Try again. Copyright © 2022 Yahoo. All rights reserved.
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...