Ads
related to: discriminant for real roots worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Lessons
Search results
Results from the WOW.Com Content Network
If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.
If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...
If the discriminant is positive, then there are two distinct roots +, both of which are real numbers. For quadratic equations with rational coefficients, if the discriminant is a square number , then the roots are rational—in other cases they may be quadratic irrationals .
If the discriminant is positive, then the vertex is not on the -axis but the parabola opens in the direction of the -axis, crossing it twice, so the corresponding equation has two real roots. If the discriminant is negative, then the parabola opens in the opposite direction, never crossing the -axis, and the equation has no ...
The discriminant of K can be referred to as the absolute discriminant of K to distinguish it from the relative discriminant of an extension K/L of number fields. The latter is an ideal in the ring of integers of L , and like the absolute discriminant it indicates which primes are ramified in K / L .
whose solutions are called roots of the function. The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root.
If >, the cubic has three distinct real roots; If <, the cubic has one real root and two non-real complex conjugate roots. This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots.
Moreover, if the polynomial degree is a power of 2 and the roots are all real, then if there is a root that can be expressed in real radicals it can be expressed in terms of square roots and no higher-degree roots, as can the other roots, and so the roots are classically constructible. Casus irreducibilis for quintic polynomials is discussed by ...
Ads
related to: discriminant for real roots worksheetteacherspayteachers.com has been visited by 100K+ users in the past month