Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 ... Ethanol: 0.78 78.4 1.22 –114.6 ...
Hydrogen chloride is produced by combining chlorine and hydrogen: Cl 2 + H 2 → 2 HCl. As the reaction is exothermic, the installation is called an HCl oven or HCl burner. The resulting hydrogen chloride gas is absorbed in deionized water, resulting in chemically pure hydrochloric acid. This reaction can give a very pure product, e.g. for use ...
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
Hydrogen chloride is produced by combining chlorine and hydrogen: Cl 2 + H 2 → 2 HCl. As the reaction is exothermic, the installation is called an HCl oven or HCl burner. The resulting hydrogen chloride gas is absorbed in deionized water, resulting in chemically pure hydrochloric acid. This reaction can give a very pure product, e.g. for use ...
The minimum-pressure azeotrope has an ethanol fraction of 100% [86] and a boiling point of 306 K (33 °C), [85] corresponding to a pressure of roughly 70 torr (9.333 kPa). [87] Below this pressure, there is no azeotrope, and it is possible to distill absolute ethanol from an ethanol-water mixture.
Molar enthalpy of zinc above 298.15 K and at 1 atm pressure, showing discontinuities at the melting and boiling points. The enthalpy of melting (ΔH°m) of zinc is 7323 J/mol, and the enthalpy of vaporization (ΔH°v) is 115 330 J/mol. The enthalpy of vaporization can be written as
Liebig treated anhydrous ethanol with dry chlorine gas. [3] Chloral is produced commercially by the chlorination of acetaldehyde in the presence of hydrochloric acid, producing chloral hydrate. Ethanol can also be used as a feedstock. This reaction is catalyzed by antimony trichloride: H 3 CCHO + 3 Cl 2 + H 2 O → Cl 3 CCH(OH) 2 + 3 HCl
The undesired products, by-products chlorine, hydrogen chloride, and chlorotrifluoromethane, can be removed by evaporation at -110 °C. Trifluoromethanol has a melting point of -82 °C and a calculated boiling point of about -20 °C. The boiling point is thus about 85 K lower than that of methanol. This fact can be explained by the absence of ...