Search results
Results from the WOW.Com Content Network
A payoff function for a player is a mapping from the cross-product of players' strategy spaces to that player's set of payoffs (normally the set of real numbers, where the number represents a cardinal or ordinal utility—often cardinal in the normal-form representation) of a player, i.e. the payoff function of a player takes as its input a ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This is a documentation subpage for Template:Payoff matrix. It may contain usage information, categories and other content that is not part of the original template page. Usage
Payoff functions, u: Assign a payoff to a player given their type and the action profile. A payoff function, u= (u 1 , . . . , u N ) denotes the utilities of player i Prior, p : A probability distribution over all possible type profiles, where p(t) = p(t 1 , . . . ,t N ) is the probability that Player 1 has type t 1 and Player N has type t N .
Suppose a zero-sum game has a payoff matrix M where element M i,j is the payoff obtained when the minimizing player chooses pure strategy i and the maximizing player chooses pure strategy j (i.e. the player trying to minimize the payoff chooses the row and the player trying to maximize the payoff chooses the column).
"A best response to a coplayer’s strategy is a strategy that yields the highest payoff against that particular strategy". [9] A matrix is used to present the payoff of both players in the game. For example, the best response of player one is the highest payoff for player one’s move, and vice versa.
The payoffs are provided in the interior. The first number is the payoff received by the row player (Player 1 in our example); the second is the payoff for the column player (Player 2 in our example). Suppose that Player 1 plays Up and that Player 2 plays Left. Then Player 1 gets a payoff of 4, and Player 2 gets 3.
Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten.A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game. 1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since ...