Search results
Results from the WOW.Com Content Network
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .
Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position ( null hypothesis ) is incorrect.
30 samples of 10 dots of random color (blue or red) are observed. On each sample, a two-tailed binomial test of the null hypothesis that blue and red are equally probable is performed. The first row shows the possible p-values as a function of the number of blue and red dots in the sample.
A very simple equivalence testing approach is the ‘two one-sided t-tests’ (TOST) procedure. [11] In the TOST procedure an upper (Δ U) and lower (–Δ L) equivalence bound is specified based on the smallest effect size of interest (e.g., a positive or negative difference of d = 0.3).
In the design-based approach, the model is taken to be known, and one of the goals is to ensure that the sample data are selected randomly enough for inference. Statistical assumptions can be put into two classes, depending upon which approach to inference is used. Model-based assumptions. These include the following three types:
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.