Search results
Results from the WOW.Com Content Network
The incompleteness theorems are among a relatively small number of nontrivial theorems that have been transformed into formalized theorems that can be completely verified by proof assistant software. Gödel's original proofs of the incompleteness theorems, like most mathematical proofs, were written in natural language intended for human readers.
This article gives a sketch of a proof of Gödel's first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses, which are discussed as needed during the sketch. We will assume for the remainder of the article that a fixed theory satisfying these hypotheses has been selected.
The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example, Peano arithmetic), there are true propositions about the natural numbers that can be neither proved nor disproved from the axioms. [4]
Kurt Gödel developed the concept for the proof of his incompleteness theorems. (Gödel 1931) A Gödel numbering can be interpreted as an encoding in which a number is assigned to each symbol of a mathematical notation, after which a sequence of natural numbers can then represent a sequence of symbols. These sequences of natural numbers can ...
This method was introduced by J. Barkley Rosser in 1936, as an improvement of Gödel's original proof of the incompleteness theorems that was published in 1931. While Gödel's original proof uses a sentence that says (informally) "This sentence is not provable", Rosser's trick uses a formula that says "If this sentence is provable, there is a ...
The main results established are Gödel's first and second incompleteness theorems, which have had an enormous impact on the field of mathematical logic. These appear as theorems VI and XI, respectively, in the paper. In order to prove these results, Gödel introduced a method now known as Gödel numbering.
The utility of the β function comes from the following result (Gödel 1931, Hilfssatz 1, p. 192-193), which is the purpose of the β function in Gödel's incompleteness proof. This result is explained in more detail than in Gödel's proof in (Mendelson 1997:186) and (Smith 2013:113-118).
Hofstadter points to Bach's Canon per Tonos, M. C. Escher's drawings Waterfall, Drawing Hands, Ascending and Descending, and the liar paradox as examples that illustrate the idea of strange loops, which is expressed fully in the proof of Gödel's incompleteness theorem. The "chicken or the egg" paradox is perhaps the best-known strange loop ...