enow.com Web Search

  1. Ads

    related to: visible distance by height and time equation worksheet free printable

Search results

  1. Results from the WOW.Com Content Network
  2. Radar horizon - Wikipedia

    en.wikipedia.org/wiki/Radar_horizon

    This reduces the shadow zone, but causes errors in distance and height measuring. In practice, to find , one must be using a value of 8.5·10 3 km for the effective Earth's radius (4/3 of it), instead of the real one. [2] So the equation becomes:

  3. Visibility - Wikipedia

    en.wikipedia.org/wiki/Visibility

    The height of the elevated point plus the Earth radius form its hypotenuse. If both the eyes and the object are raised above the reference plane, there are two right-angled triangles. If both the eyes and the object are raised above the reference plane, there are two right-angled triangles.

  4. Horizon - Wikipedia

    en.wikipedia.org/wiki/Horizon

    For example, for an observer B with a height of h B =1.70 m standing on the ground, the horizon is D B =4.65 km away. For a tower with a height of h L =100 m, the horizon distance is D L =35.7 km. Thus an observer on a beach can see the top of the tower as long as it is not more than D BL =40.35 km away.

  5. Line-of-sight propagation - Wikipedia

    en.wikipedia.org/wiki/Line-of-sight_propagation

    If the height h is given in feet, and the distance d in statute miles, d ≈ 1.23 ⋅ h {\displaystyle d\approx 1.23\cdot {\sqrt {h}}} R is the radius of the Earth, h is the height of the ground station, H is the height of the air station d is the line of sight distance

  6. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Also, the velocities in the directions perpendicular to the frame changes are affected, as shown above. This is due to time dilation, as encapsulated in the dt/dt′ transformation. The V′ y and V′ z equations were both derived by dividing the appropriate space differential (e.g. dy′ or dz′) by the time differential.

  7. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    We are interested in the time when the projectile returns to the same height it originated. Let t g be any time when the height of the projectile is equal to its initial value. 0 = v t sin ⁡ θ − 1 2 g t 2 {\displaystyle 0=vt\sin \theta -{\frac {1}{2}}gt^{2}}

  1. Ads

    related to: visible distance by height and time equation worksheet free printable