Search results
Results from the WOW.Com Content Network
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is
Stability diagram classifying Poincaré maps of linear autonomous system ′ =, as stable or unstable according to their features. Stability generally increases to the left of the diagram. [ 1 ] Some sink, source or node are equilibrium points .
More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis). The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.
The importance in probability theory of "stability" and of the stable family of probability distributions is that they are "attractors" for properly normed sums of independent and identically distributed random variables. Important special cases of stable distributions are the normal distribution, the Cauchy distribution and the Lévy distribution.
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...
The stability radius of a continuous function f (in a functional space F) with respect to an open stability domain D is the distance between f and the set of unstable functions (with respect to D). We say that a function is stable with respect to D if its spectrum is in D. Here, the notion of spectrum is defined on a case-by-case basis, as ...
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
Classes range from 1 (most unstable) to 7 (most stable). The Turner stability class system was devised by D. B. Turner as a modification of the Pasquill stability class system. [1] The following table is used to determine the Turner stability class for a given wind speed and net solar radiation: