enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  3. List of derivatives and integrals in alternative calculi

    en.wikipedia.org/wiki/List_of_derivatives_and...

    There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi. [1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.

  4. Template:Calculus - Wikipedia

    en.wikipedia.org/wiki/Template:Calculus

    General Leibniz; Faà di Bruno's formula; Reynolds; Integral. Lists of integrals; Integral transform; Leibniz integral rule; Definitions; Antiderivative; Integral ...

  5. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The Leibniz rule bears a strong resemblance to the binomial theorem, and in fact the binomial theorem can be proven directly from the Leibniz rule by taking () = and () =, which gives ( a + b ) n e ( a + b ) x = e ( a + b ) x ∑ k = 0 n ( n k ) a n − k b k , {\displaystyle (a+b)^{n}e^{(a+b)x}=e^{(a+b)x}\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b ...

  6. Symbolic integration - Wikipedia

    en.wikipedia.org/wiki/Symbolic_integration

    In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a formula for a differentiable function F(x) such that = (). This is also denoted = ().

  7. Integration using parametric derivatives - Wikipedia

    en.wikipedia.org/wiki/Integration_using...

    For example, suppose we want to find the integral ∫ 0 ∞ x 2 e − 3 x d x . {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x}\,dx.} Since this is a product of two functions that are simple to integrate separately, repeated integration by parts is certainly one way to evaluate it.

  8. Calculus ratiocinator - Wikipedia

    en.wikipedia.org/wiki/Calculus_ratiocinator

    Leibniz constructed just such a machine for mathematical calculations, which was also called a "stepped reckoner". As a computing machine, the ideal calculus ratiocinator would perform Leibniz's integral and differential calculus. In this way the meaning of the word, "ratiocinator" is clarified and can be understood as a mechanical instrument ...

  9. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    Differentiate both sides of the equation with respect to time (or other rate of change). Often, the chain rule is employed at this step. Substitute the known rates of change and the known quantities into the equation. Solve for the wanted rate of change.