Search results
Results from the WOW.Com Content Network
The anticlockwise or counterclockwise direction. Widdershins (sometimes withershins, widershins or widderschynnes) is a term meaning to go counter-clockwise, anti-clockwise, or lefthandwise, or to walk around an object by always keeping it on the left.
Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in Commonwealth English) anticlockwise (ACW) or (in North American English) counterclockwise (CCW). [1]
This definition relies on the fact that every simple closed curve admits a well-defined interior, which follows from the Jordan curve theorem. The inner loop of a beltway road in a country where people drive on the right side of the road is an example of a negatively oriented ( clockwise ) curve.
When viewed at a position along the positive z-axis, the ¼ turn from the positive x-to the positive y-axis is counter-clockwise. For left-handed coordinates, the above description of the axes is the same, except using the left hand; and the ¼ turn is clockwise. Interchanging the labels of any two axes reverses the handedness.
represents a counterclockwise rotation of a vector v by an angle θ, or a rotation of CS by the same angle but in the opposite direction (i.e. clockwise). Alibi and alias transformations are also known as active and passive transformations, respectively.
In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly. [2] [3] A rotation of axes is a linear map [4] [5] and a rigid transformation.
This definition is independent of the object's direction of rotation about its axis. This implies that an object's direction of rotation, when viewed from above its north pole, may be either clockwise or counterclockwise. The direction of rotation exhibited by most objects in the solar system (including Sun and Earth) is counterclockwise.
As a result, air travels clockwise around high pressure in the Northern Hemisphere and anticlockwise in the Southern Hemisphere. Air around low-pressure rotates in the opposite direction, so that the Coriolis force is directed radially outward and nearly balances an inwardly radial pressure gradient .