Search results
Results from the WOW.Com Content Network
— Andrew Pressley: Elementary Differential Geometry, p. 183 Pressley (p. 185) explains this theorem as an expression of conservation of angular momentum about the axis of revolution when a particle moves along a geodesic under no forces other than those that keep it on the surface.
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.: You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work
Tangent developable of a curve with zero torsion. The tangent developable is a developable surface; that is, it is a surface with zero Gaussian curvature.It is one of three fundamental types of developable surface; the other two are the generalized cones (the surface traced out by a one-dimensional family of lines through a fixed point), and the cylinders (surfaces traced out by a one ...
Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors
The differential-geometric properties of a parametric curve (such as its length, its Frenet frame, and its generalized curvature) are invariant under reparametrization and therefore properties of the equivalence class itself. The equivalence classes are called C r-curves and are central objects studied in the differential geometry of curves.
A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.
Upload file; Search. Search. Appearance. ... The study of geometry may be approached by the study of these ... A. N. Pressley – Elementary Differential Geometry ...
In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.